



# Low Back Pain How Imaging Can Add Value

Vinil Shah, MD
Assistant Professor of Radiology
University of California, San Francisco

# Disclosures

No relevant disclosures

### Message

 In the setting of low back pain, "value" can be added by imaging the pathophysiology of pain, not by demonstrating age-related "degeneration"

### Outline

- Challenges of imaging low back pain
- Sources of Low Back Pain
- Lumbar Disc Nomenclature
- Imaging pathophysiology of low back pain
- Special Considerations:
  - Retrodural Space of Okada
  - Segmental Instability

### Low Back Pain Paradox

- Second most common reason for physician office visits in US
- Health care costs > \$100 billion annually
- Ever-increasing use of imaging
- Increasing surgical & other interventions

 Back pain remains the single greatest cause of work disability in the US

# Role of Imaging

- Primarily role of imaging is detection of underlying systemic disease
- Systemic disease is uncommon
- Presentation with back/leg pain:
  - 0.7% metastatic cancer
  - 0.01% spine infection
  - 4.0% osteoporotic compression fx
  - 0.3% ankylosing spondylitis

Jarvik. Ann Intern Med 2002



# When to Image: ACR

- Low back pain +
  - ?underlying systemic disorder or infection
  - Cauda equina sx
  - Persistent pain > 6 weeks, failed conservative Rx
  - Prominent radicular component
  - Progressive neurologic deficits
  - Risk factors for compression fx
  - Candidate for intervention



# Challenges of Imaging

- Low prevalence of systemic disease implies most findings seen will be "degenerative"
- Specificity Challenge:
  - "Degenerative" findings in asymptomatic subjects
- Sensitivity Challenge:
  - Dynamic lesions
- Usefulness/Validity Challenge:
  - Can imaging predict clinical presentation or course?
  - Can imaging predict response to therapy?

# **Specificity Challenge**

| Segment |       | Nuclear |     | HIZ   |
|---------|-------|---------|-----|-------|
| L1      | 0.5%  | 7%      | 1%  | 0%    |
| L2      | 3.5%  | 12%     | 3%  | 4%    |
| L3      | 16.5% | 15.5%   | 4%  | 5%    |
| L4      | 25.0% | 49.5%   | 11% | 23.5% |
| L5      | 35.0% | 53%     | 10% | 24%   |

# Spine Imaging: Sensitivity



Courtesy: Tim Maus

# Challenges of Imaging

- Imaging does not visualize pain
- Morphologic evaluation of spine not useful
- Age-related "degeneration" ≠ Pain
- Inflammation = Pain
- Need to image physiology of pain
  - Identify source of pain
  - Assist in selection of therapies

### Sources of Low Back Pain

#### DePalma et al.

Table 1 Prevalence and mean age by source of LBP

| Source of LBP (N = 170)          | Count | Prevalence<br>(%) | 95% CI<br>prevalence (%) | Mean age<br>(SD) | 95% Cl age    |
|----------------------------------|-------|-------------------|--------------------------|------------------|---------------|
| Intervertebral disc              | 71    | 41.8              | (34.6, 49.3)             | 43.7 (10.3)      | (41.3, 46.1)  |
| Lumbar facet joint(s)            | 52    | 30.6              | (24.2, 37.9)             | 59.6 (13.1)      | (56.0, 63.3)  |
| Sacroiliac joint(s)              | 31    | 18.2              | (13.2, 24.7)             | 61.4 (17.7)      | (54.9, 67.9)  |
| Vertebral insufficiency fracture | 5     | 2.9               | (1.3, 6.7)               | 79.0 (11.8)      | (64.3, 93.7)  |
| Pelvic insufficiency fracture    | 3     | 1.8               | (0.6, 5.1)               | 71.3 (11.7)      | (42.2, 100.4) |
| Baastrup's disease               | 3     | 1.8               | (0.6, 5.1)               | 75.3 (4.7)       | (63.6, 87.1)  |
| Fusion hardware                  | 5     | 2.9               | (1.3, 6.7)               | 59.6 (19.4)      | (35.4, 83.8)  |

LBP = low back pain; CI = confidence interval; SD = standard deviation.

# Clinical Pain Syndromes

- Axial low back pain
- Axial low back pain + Radicular pain
- Radicular pain

### Axial Low Back Pain

- Anterior column as source
  - Younger patients
  - IDD (discogenic pain, most common cause)
    - Fissures
    - End-plate inflammation
  - Discography, MR
- Posterior column as source
  - Older patients
  - Facet joints
  - Relief of index pain from anesthetically controlled blocks of joint innervation
  - MRI with physiologic imaging

# Lumbar Discovertebral Complex



# IDD: Endplate Fatigue Fracture



Courtesy: Tim Maus

# Internal Disc Disruption



© N Bogduk 201



- Distinct entity
- Not age related change
- Correlates with axial low back pain
- Presence of fissure differentiates an affected disc from a normal or "degenerated" disc

# Radial Fissure



### **IDD: The Evidence**

- ≠ degeneration
- ≠ age-changes

| Pain<br>Reproduction |    | Annular | Disruption | Grade<br>O |
|----------------------|----|---------|------------|------------|
| Exact                | 36 | 13      | 5          | 3          |
| Similar              | 39 | 41      | 25         | 13         |
| Dissimilar           | 15 | 20      | 5          | 7          |
| None                 | 10 | 26      | 65         | 77         |

Vanharanta, et al The relationship of pain provocation to lumbar disc deterioration as seen by CT/discography. *Spine* 1987; 12 (3): 295-8.

# Diagnosis of IDD: Provocation Discography

- Contrast injected into nucleus pulposus via percutaneously placed needle
- Two main elements
  - Assessment of patient's response to pain when fluid is injected into disc
  - Disc morphology assessed with radiography and CT



# Discography Indications

- Not the initial study to evaluate for possible disc herniation or low back pain
- COMPLEMENTARY STUDY FOR TREATMENT PLANNING
  - Identify IDD as source of chronic LBP
- Controversial: Can discography cause accelerated disc degeneration?

# Internal Disc Disruption Disc Stimulation













# MR Signs of IDD

- Inflammatory end plate changes (Modic)
  - Physiologic response to altered load bearing as nuclear matrix degrades
  - Elevated TNFα in cartilaginous end plates
- High intensity zones (HIZ)
  - Inflammatory lesion
  - Predicts a painful disc with high specificity,
     PPV, +LR

# High Intensity Zone (HIZ)







# 65y LBP, End plate edema







### Radicular Pain

- Young patients, think disc herniation
- Older patients, fixed, stenotic lesions more common
- Fissure weakens posterior annulus
- Allows herniation of nuclear material into outer annulus as contained protrusion or breach the annulus and pass into epidural space as an extrusion

### **Lumbar Disc Nomenclature**

- "Nomenclature & Classification of Lumbar Disc Pathology," – collaboration of task forces of NASS, ASNR, ASSR
- Version 2.0: The Spine Journal 14 (2014): 2525-2545
- Goal: universal standardization of language
- Definitions based on anatomy & pathology, primarily as visualized on imaging studies

# Disc Herniation Nomenclature



# Disc Herniation Nomenclature



### Lumbar Disc Nomenclature: Zones



# Acute Foraminal Disc Extrusion





### Lumbar Radicular Pain



Compression of neural tissue

#### Lumbar Radicular Pain

 Why might epidural corticosteroids be therapeutic in a condition whose primary anatomic basis is neural compression?

Neural compression & an inflammatory reaction

# Pathogenesis of Radicular Pain

#### Evidence of an inflammatory component:

- 1. Surgical relief of neural compression is not uniformly clinically successful
- 2. Severity of symptoms has no relationship with herniation size or shape
- 3. Conservative therapy including ESI is often effective
- 4. Introduction of nucleus pulposis into the epidural space, without nerve compression, induces nerve dysfunction & degeneration

Mulleman D, et al. Pathophysiology of disk-related sciatica. I.--Evidence supporting a chemical component. Joint Bone Spine 2006; 73 (2): 151-8.

#### How to detect inflammation on MRI?

- Fat-saturated T2 / STIR
- Gadolinium enhanced
  - Demonstrates extent of granulation tissue & associated chemical radiculitis
- If no evidence of a neural compressive lesion on standard imaging consider an enhanced examination

# Sequestration, inflammatory enhancement



## **Chemical Radiculitis**



### 75M Left L5 Radicular Pain



### Disc Extrusion: Resolution







Resolution of left L2 extrusion over 1 year Symptoms resolved as well



#### Radicular Pain: Fixed lesions

- Inflammatory response in fixed lesions (spinal stenosis) is precipitated by venous hypertension
- Pain syndrome typically consists of gluteal & LE pain worse with walking, relieved with rest, usually with back pain +/weakness



## Spinal Stenosis







#### Image Guided Rx: Epidural Steroids

- Evidence Based Indications:
  - Radicular pain in patients whom:
    - Have failed conservative therapy
    - Pain is likely to have an inflammatory component
    - Lack contraindications to the procedure
- Lumbar TFESI
  - high quality evidence of efficacy in treatment of radicular pain
  - greater clinical effectiveness in acute pain patients (< 3 months)</li>
- Attenuates local inflammatory response, patient remains functional

#### Importance of Pre-Procedure Imaging



68F anterior thigh pain

## 68F anterior thigh pain





#### Posterior Element Pain Generators

- Facet synovitis
  - Axial low back pain, can be radicular if mass effect, referred pain syndromes
  - Synovial cysts
- Acute or subacute pars defects
- Interspinous bursitis

Inflammation is common element

### Facetogenic Pain

- Nonspecific exam
- Mechanical pain exacerbated with bending, rotation, or extension
- Structural changes of facet arthrosis do not correlate with pain: age-related change
- Imaging can provide physiologic information regarding inflammation



60F right lower facet pain syndrome, SPECT/CT

## Facet Joint: Physiologic Imaging



## **Facet Joint Innervation**



Courtesy: F.H. Willard

### **Blocking Facet Joint Innervation**



Courtesy: F.H. Willard

## Synovial Cyst

M, 61 Left L5 radicular pain









# Synovial Cyst Rupture







## Posterior Element Pain: Interspinous Bursitis







#### Attempted ESI: Bilateral Facet Arthrograms





### Retrodural Space of Okada



Murthy, NS et al. The Retrodural Space of Okada. *AJR* 2011; 196:W784-9

## Retrodural Space of Okada









## Segmental Instability

- Degenerative, isthmic etiology
- Abnormal motion segment
  - posterior column (facet DJD, pars defect)
  - anterior column (disk degeneration)
  - translation, rotation, angular curvature
- Unremitting sx, surgical fusion



# Segmental Instability





# Segmental Instability







#### Take Home Points

- Pathophysiology of spine imaging rooted in biochemistry of inflammation
- Inflammation is basis of low back pain clinical pain syndromes
- IDD is mechanism for discogenic pain
- Facet pain syndromes older patients
- Physiologic imaging can be valuable in establishing diagnosis & in directing treatment

#### Thank You

- Questions???
- Contact: Vinil.shah@ucsf.edu

